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This paper describes a Monte Carlo simulation technique designed to predict the sign and magnitude of the

helical twisting power, bM, of a chiral material. The method calculates the chemical potential difference, Dm,

between a chiral dopant and its enantiomer when they are placed in a twisted nematic solvent. In the low

concentration limit, Dm is directly proportional to bM. In the simulations presented, the chiral dopants are

represented by atomistic models and a generic twisted nematic solvent composed of soft repulsive

spherocylinders is employed. A free energy perturbation method is used to calculate Dm. Calculations are

presented for five different dopant molecules with a wide range of helical twisting powers.

Introduction

If a nematic liquid crystal is doped with a low concentration of
chiral material, then a chiral nematic phase is formed with a
helical pitch, P, which is inversely proportional to the
concentration of the chiral dopant. Experimental work
points to the fact that different dopant molecules have
widely different abilities to twist a nematic phase, and this is
normally characterized by defining a macroscopic helical
twisting power (HTP) bM:1

bM~(Pcwr)
{1 (1)

where cw is the weight concentration of chiral dopant and r
defines its enantiomeric purity. Depending on the material
concerned, the sign of bM can be either positive (right-handed
helix) or negative (left-handed helix). Two pure enantiomers of
the same material will always have the same magnitude of bM
but opposite signs.
There are important technological uses for chiral dopant

materials. They are used in low concentrations in twisted
nematic displays, and in chiral films for use with displays. They
can also be used in polarization sensitive polymer films2 and
thermally addressed display materials.3 In many applications
however, limits on solubility of the dopant, or specific material
requirements mean that only small concentrations of chiral
dopants can be employed. Consequently, there has been
considerable interest in the synthesis of materials with high
bM values. However, this can be an extremely difficult task to
achieve. There are no easy rules to follow to predict how the
molecular structure of a chiral dopant is related to the helical
twisting power it induces. Small changes in structure can lead
to large changes in bM.4,5 These large changes apparently arise
because chiral solute molecules with slightly different shapes
can induce significant differences in the local orientational
order of the solvent molecules around them. This in turn
induces different amounts of twist in the bulk solvent. It is clear
therefore that a theoretical method that can predict helical
twisting values reliably would be extremely valuable. It would
improve our understanding of why some molecules have large
HTPs and some do not, and it could be used as a way of sifting
through many trial molecular structures prior to attempting a

difficult synthetic pathway. The latter encompasses one of the
key aims of modern theoretical chemistry: to do molecular
engineering, i.e. to predict key material properties based only
on a prior knowledge of chemical structure and molecular
interactions.
A number of workers have attempted to provide a theore-

tical framework for predicting HTPs. Prominent is the work of
Nordio, Ferrarini and co-workers who provide an interesting
theoretical model for predicting HTPs based on a mean field
description of the interactions between a chiral solute molecule
and a liquid crystal solvent.6–9 Their model has shown
considerable success, though does not appear to work in all
cases. Cook and Wilson10 recently formulated a different
technique for obtaining HTPs of chiral dopants based on some
earlier work by Allen.11 This method involves simulations of a
chiral dopant molecule in a twisted nematic solvent using an
efficient Monte Carlo (MC) simulation program. The MC
simulations are used to compute the difference in chemical
potential, Dm, between a chiral solute and its enantiomer
immersed in the same twisted nematic solvent. Dm is directly
proportional to bM, and, given a value for the twist elastic
constant, K2, an absolute value for bM can be predicted. The
Cook–Wilson method is revisited in this article. We consider
simulations in a generic solvent composed of soft repulsive
spherocylinder molecules. We do this because this particular
solvent is relatively cheap to simulate, and in many cases HTP
values do not depend critically on the nature of the solvent.
(We discuss the experimental cases where HTPs have been
influenced by the solvent later in the article.) However, our
method is not limited to simple phenomenological models for
the solvent, and can be extended relatively easily to solvents
that are represented by fully atomistic potentials.
The format of this paper is as follows. In section 2, we outline

the theory behind this method of calculating HTPs. In section
3, we describe the soft repulsive spherocylinder solvent and
some molecular dynamics simulations along an isochore, which
allow us to obtain a suitable state-point for use in the HTP
simulations. In section 4, we describe Monte Carlo free energy
perturbation simulations used to obtain HTPs in the presence
of the soft spherocylinder solvent, and in section 5 we describe
the results arising from these calculations. Finally, in section 6
we make some general comments about the strengths and
weaknesses of our method and indicate the ways in which it can
be extended with further work.
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Theory

When the concentration of chiral dopant is small, then,
following the de Gennes definition,1 the equilibrium wave-
vector k0 of the twisted phase is linearly dependent on the
concentration of solute molecules [eqn. (2)].

k0~
2p

P0
~4pbr (2)

Here, r ~ N/V is the number density of dopant molecules and
the constant of proportionality b is defined as the microscopic
helical twisting power.1 (We note in passing that de Gennes
definition of b is not the same as that of the usual quantity bM
of eqn. (1) that is measured experimentally, but b can easily be
converted into bM.) If a uniformly twisted nematic with
wavevector k~ 2p/P is doped with small numbers (Nz and
N2) of a chiral dopant (with a microscopic HTP of ¡b), then
there will be an elastic contribution to the free energy that
arises from distortions from the uniformly twisted state11

[eqn. (3)]:

DF~
1

2
VK2 k{

4pb

V
½Nz{N{�

� �2

(3)

where V is the volume of the system and K2 is the twist elastic
constant. Following Allen,11 in the limit of infinite dilution
(N2, Nz A 0),

�{{�z~
LF
LN{

{
LF
LNz

~8pbK2k (4)

so that

b~
D�

8pK2k
(5)

Hence (for low values of k), in the low concentration limit, we
would be expected to be able to obtain values for b from a
measurement of the chemical potential difference between two
enantiomers in a uniformly twisted nematic solvent with a twist
elastic constant of K2.

Simulations of soft repulsive spherocylinders

The soft repulsive spherocylinder (SRS) potential is computa-
tionally efficient, usually requiring 3–4 times less computer
power than the more familiar single-site Gay–Berne model. It is
therefore a useful solvent to employ in the calculations of
helical twisting power described in section 4. However, with the
exception of some rather preliminary work by Japanese
workers,12–14 little is known about the phase diagram of this
system. Consequently, we carried out molecular dynamics
studies for a whole series of isochores of a SRS system with
L/D~ 4 (Fig. 2). The results of these studies will be described
in full in a later work;15 here we present the results for one
isochore, from which we obtained a suitable nematic state-
point for use in section 4.
675 SRS molecules were studied. The molecules had a purely

repulsive short range pair potential of the form

Uij~
4e s0

dij

� �12

{ s0
dij

� �6

z 1
4

� �
, dij < dcut

0, dij§dcut

8<
: (6)

where s0 ~ D is the diameter of the spherocylinder, dij is the
shortest separation between hard lines of length L that run
through the middle of each spherocylinder (see Fig. 1) and
dcut ~ 21/6s0. The distance dependence of the pair potential is
shown in Fig. 2. The SRS molecules were initially placed,
completely aligned, in a simulation box of cubic dimensions
subject to periodic boundary conditions. A molecular dynamics
(MD) simulation using a Berendsen thermostat NVT ensemble

was used to ‘melt’ the system until the isotropic phase was
obtained. The NVT ensemble was then used to sequentially
reduce the temperature of the system to desired levels.
Equilibration was generally achieved at each temperature
after 1–5 6 105 steps. Further, MD simulations in the NVE
ensemble were then used to equilibrate the sample at each state
point and the average temperature, pressure and order
parameter, S2, were computed over production runs of 0.5–
26 105 steps.
The results for the uniaxial nematic order parameter

S2~
3

2
cos2h{

1

2
(7)

as a function of temperature are shown in Fig. 3. In eqn. (7),
the angular brackets indicate an ensemble average and h is the
angle between a molecule and the nematic director. For

Fig. 1 Schematic diagram defining the soft repulsive spherocylinder
model.

Fig. 3 The uniaxial nematic order parameter, S2 as a function of
reduced temperature, T*, for a reduced density of r* ~ 0.131857.

Fig. 2 The SRS pair potential for four fixed orientations of
spherocylinders.
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constant volume simulations the system goes through a two
phase region, but is in a well-defined nematic phase between
T* ~ 1.5 and T*~ 1.0. A state point of T*~ 1.3 (corres-
ponding to S2 ~ 0.67) was chosen for the HTP calculations in
section 4. We note in passing that the order parameter does not
drop sharply to zero in Fig. 3. This is caused by the two-phase
region seen in these NVT simulations. At high temperatures the
small residual orientational order is typical of that seen in
simulations conducted with relatively small numbers of
particles.
In order to carry out the helical twisting power calculations it

is necessary to have a twisted nematic solvent. In order to do
this the twisted periodic boundary conditions of Allen and
Masters16 can be employed. Here, molecules in the neighbour-
ing simulation box (zz direction) are rotated through 90
degrees about the z axis with respect to their coordinates and
orientations in the original box (and those in the neighbouring
box in the opposite (2z) direction are rotated through 290
degrees). For T* ~ 1.3, we tested whether the twist imposed by
the periodic box had any significant effect on the ordering of
the model fluid. Using Monte Carlo simulations of the SRS
fluid (described in section 4) we obtained essentially identical
results for the nematic order parameter in an untwisted system
and the chiral nematic order parameter in a 90 degrees twisted
system. The values of these order parameters were in agreement
with the molecular dynamics results.

Calculations of HTPs

Allen11 has used eqn. (5) to obtain values of b for dimers
consisting of two touching prolate ellipsoids of axial ratio
e ~ 5 within a fluid of similar monomeric ellipsoids. In that
work an explicit expression was obtained for the excess
chemical potential of a dimer composed of two hard ellipsoids
in contact in a twisted nematic phase of hard ellipsoids.17

However, eqn. (5) is not restricted to systems where explicit
expressions can be derived for the chemical potential. For
example, Dm is equivalent to the free energy change in
converting one mole of chiral solute into its mirror image in
the presence of a twisted nematic solvent at infinite dilution.
This quantity can be obtained in a number of ways. One simple
pathway involves using statistical perturbation theory18,19 to
grow an enantiomer into an excess of twisted nematic solvent
and measuring the free energy change for that process,
followed by a comparison between this quantity and that
obtained for the same calculation on the enantiomer. In the
simplest possible case, we write the internal energy of the
combined solvent/solute system as eqn. (8)

El~Utot~U solute

z
XNsolvent

i~1

XNsolvent

j<i

U solvent
ij

z
XNsolute

i~1

XNsolvent

j~i

U
solvent=solute
ij

(8)

where Usolute is the solute energy (a constant for a rigid solute
molecule),Uij

solvent (see ref. 20) is the solvent interaction energy
[in this case given by the SRS interaction energy in eqn. (6)] and
Uij

solvent/solute is the solute–solvent interaction energy (defined
below). In eqn. (8), the solute has Nsolute atoms interacting with
Nsolvent solvent molecules, and a control parameter l, which
varies between 0 and 1, controls the growth of solute into the
solvent (see below). In the spirit of the SRS potential, we have
used a similar form for the interaction between a solute atom
and a solvent molecule, such that eqn. (6) is followed with the
distance dij becoming the shortest separation between a hard
line through the middle of the spherocylinder and the centre of

the atomic site. The usual combining rules are applied [eqn. (9)
and (10)]

s
solute=solvent
0 ~

satom0 zssolvent0

2
(9)

e
solute=solvent
0 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eatom0 esolvent0

q
(10)

where e0
atom and s0

atom values for each atom type in the solute
are taken from the values for these used in the OPLS-AA force
field of Jorgensen.21 The latter has been fitted to give excellent
densities and heats of vaporization for small organic molecules.
For e0

solvent we have used a value of 2.5583 kJ mol21, which for
the reduced density of r* ~ 0.131857 used in section 3, scales
the reduced temperature of T* ~ 1.3 to 400 K. A value of
s0

solvent ~ 5.7 Å was used to provide a generic solvent with an
overall length (5s0

solvent ~ 28.5 Å) that is in the typical range
for many nematogens.
The free energy difference between two systems is given by

eqn. (11)

DFBA~{kBT lnSexp({DEBA=kBT)TA (11)

where DEBA is the energy difference between systems A and B
and the angular brackets indicate an ensemble average over a
simulation of system A. Eqn. (11) is only valid for two systems
with similar Hamiltonians. Consequently the growth of an
enantiomer into the twisted nematic solvent must be carried out
in a series of separate simulations, using the dimensionless
control parameter 0 ¡ l¡ 1 to gradually perturb the system.
In this work the values of s0

atom and e0
solute/solvent were both

scaled by l. Consequently, the growth of solute starts from an
initial non-interacting point particle at l ~ 0 and continues to
produce a completed solute molecule at l ~ 1. The total free
energy change is summed from the individual components
measured during each simulation

DF solute=solvent~

Xn
i~1

{kBT lnSexp½{(Eliz1
{Eli )=kBT �Tli

(12)

Calculations were carried out on the molecules shown in Fig. 4.
These same molecules have been used in the earlier study by
Cook and Wilson using a Gay–Berne solvent.10 For each
molecule, the equilibrium lowest energy structure was com-
puted by carrying out energy minimisation calculations using
the MM2 force-field. This geometry was then turned into a
Z-matrix prior to the MC calculations, and the exact geometry
of the enantiomer was obtained by reversing the signs of the
dihedral angles in the Z-matrix. These rigid geometries were
then used in the subsequent MC studies. MC simulations were
carried out using 513 SRS solvent molecules in a cuboidal cell
of dimensions 1 : 1 : 2 for the state-point described in section
3, employing twisted periodic boundary conditions. A random
rotation/translation of the solute molecule and each of the
solvent molecules was attempted during each Monte Carlo
cycle. Molecular orientations were represented in terms of
quaternions and a random rotation was carried out using the
approach described in refs. 22 and 23, with move sizes adjusted
to give MC acceptance ratios in the range 35–55%. All
simulations were conducted in the NVT ensemble at
400 K. Prior to the free energy calculations the solvent was
well-equilibrated using 26 105 Monte Carlo cycles. 20 l steps
were carried out for each enantiomer (40 l steps in total for
each material) where li ~ (i/20), i ~ 1, 20. 4000 MC equilibra-
tion cycles and 20000 MC production cycles were employed at
each value of l.
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HTP Results

The results from the free energy perturbation calculations are
given in Table 1. In each case the free energy change is positive
on account of the lack of attractive interactions in the model
and the disruption in solvent structure caused by the growth of
the solute molecule. This contrasts with free energy perturba-
tion calculations for growth in a Gay–Berne (GB) solvent10

where the overall free energy change is negative. For GB
particles the disruption in solvent structure is more than
compensated for by the solute–solvent interaction, which is
strongly attractive. In the case of each molecule we are able to
detect a preference for one or other of the enantiomers in terms
of the magnitude of DF. In each case the smallest free energy
change corresponds to the enantiomer that is predicted to

induce a helical twist in a nematic solvent with the same twist
sense as the periodic box. Unfortunately the errors for DF are
rather large and this means that the errors associated with the
calculated values of Dm are large also. The latter are given in
Table 2 along with HTP values from experiment. Because the
SRS solvent is newly studied, there are (unlike the Gay–Berne
solvent) no calculations of the twist elastic constant available.
We have converted Dm values to absolute values of bM by
choosing parameters for the molecular mass ~ 249.36 g mol21

of the solvent (mass of 5CB) and K2 ~ 1.63 6 10211 J m21,
such that they give the best fit to the experimental data.
Calculated values of bM have been included in Table 2 along
with those obtained for a Gay–Berne solvent using a calculated
value for the Gay–Berne twist elastic constant.24

Discussion

The results presented in this paper and elsewhere10 suggest that
using the chemical potential difference between enantiomers in
a twisted nematic solvent is a valuable theoretical approach for
the calculation of helical twisting powers. For the materials
studied, we have been able to predict the correct sign of the
helical twisting power: an important prediction in its own right.
For the SRS solvent the predictions for the magnitude of bM

are less impressive than those for the Gay–Berne system. This is
most likely to be because the errors for the free energy
calculations are much larger for the SRS solvent: the double-
wide sampling technique used for a Gay–Berne solvent in ref.
10 is not suitable for a harder SRS potential, and the errors in
DF values must be addressed (see below) if this fluid is to be
used to provide quantitative predictions for HTPs. If the free
energy calculations can be improved the SRS mesogen
should provide potentially a better solvent for these calcula-
tions than the Gay–Berne fluid used in ref. 10. Firstly, the
SRS potential is 3–4 times computationally cheaper than the
Gay–Berne potential. Secondly, the free energy changes for
the SRS fluid should not be complicated by the long-range
attractions of the Gay–Berne potential. Thirdly, it is likely that
values of Dm should be larger for the SRS fluid than for
GB particles in ref. 10, because the longer spherocylinder
particles should have a greater nematic twist elastic constant
for the state-points studied. However, the latter could be

Fig. 4 The structures of the five chiral dopant molecules A–E
investigated in this study.

Table 1 The overall free energy changes computed for the growth of
each molecule shown in Fig. 4 and its mirror image

Molecule
DF/kJ mol21 for
configuration in Fig. 4

DF/kJ mol21

for enantiomer

A 20.3¡ 0.4 20.9 ¡ 0.5
B 13.0¡ 0.3 13.9 ¡ 0.5
C 13.8¡ 0.3 15.1 ¡ 0.4
D 14.1¡ 0.1 13.8 ¡ 0.1
E 18.3¡ 0.4 18.3 ¡ 0.4

Table 2 Calculated values of Dm and helical twisting powers for the
molecules shown in Fig. 4. (The sign of bM is specified for the
enantiomer with the stereochemistry shown in Fig. 4.) The computed
SRS results in column 4 are given along with values computed for a
Gay–Berne solvent in column 5 in ref. 10

Molecule
Dm/
kJ mol21

bM (Exp.)/
mm21

bM (Comp.
SRS)/
mm21

bM (Comp.
GB)/
mm21

A 0.61¡ 0.64 z104 z17¡ 18 z99.3
B 0.97¡ 0.56 z58 z43¡ 25 z69.0
C 1.30¡ 0.50 z24 z61¡ 23 z27.9
D 0.27¡ 0.14 221 213¡ 7 226.7
E 0.02¡ 0.55 z8 z1¡ 20 0
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remedied by use of longer Gay–Berne systems or parametriza-
tions of the Gay–Berne potential with larger twist elastic
constants. K2 has yet to be measured independently for the
spherocylinder fluid, but could be obtained from monitoring of
wavevector-dependent fluctuations in the ordering tensor.24

In the current study, computational cost has limited the
system size to 513 particles. However, eqn. (5) is valid in the
low concentration limit and it would be highly desirable in
future work to test the system size dependence of the results. If
more accurate values for Dm can be obtained in future
calculations, it will be interesting to see if the different HTP
values for each molecule are dependent on the nature of the
solvent (GB or SRS). A number of workers have noted that
HTP values do not vary significantly for chemically similar
solvents. For this reason we believe that the crucial factor in
determining HTPs is the molecular shape, rather than solvent–
solute attractive interactions. The shape of the solute influences
how solvent molecules pack around it, and in an untwisted
nematic this will lead to a uniform twist in the bulk solvent. It
will be interesting to test this prediction by looking at other
single-site solvent models, and some work on this is already
under way in our laboratory.
When the nature of the nematic solvents used for HTP

measurements is chemically different, particularly with
reference to differences in their electrostatic interactions,
researchers have been able to detect solvent-induced differences
in HTP values. It is even, in extreme cases, possible to obtain
different signs for bM.5,25 In these cases solvent–solute
interactions clearly do have an influence on helical twisting
power. A likely scenario here is that particular conformations
are chosen preferentially in different solvents and that different
conformations can have different bM values. There is some
evidence for this effect in the work of Ferrarini et al.26

However, it would be relatively easy to test this suggestion by
studying different rigid conformations in a SRS solvent; or
alternatively, by using flexible molecules, as an extension to the
method presented here. We note that in using flexible molecules
it would be important to ensure that accurate conformational
averaging occurred for both enantiomers. This is likely to
require substantially longer Monte Carlo runs for each free
energy point. It would also be interesting to use the Monte
Carlo method to study the relative populations of different
enantiomers in different solvents. For example, to study the
influence of dipolar solvents a point dipole could be incor-
porated into the SRS solvent. The solvent dipole would interact
with bond dipoles within the flexible chiral solute.
It is possible also to represent the twisted nematic solvent

completely atomistically. In this way, it would be possible
to represent solvent–solute interactions faithfully. There is
already a large body of evidence pointing to the ability of
good quality atomistic calculations to represent mesogenic
interactions accurately.27–29 However, the drawback of atomis-
tic calculations is their computational expense. Currently, such
studies would require in the region of CPU months on today’s
standard workstations. Clearly the capability of sifting through
a range of structures to look for the highest HTP value would
not be available if a fully atomistic treatment of the solvent was
used.
The free energy calculations used in this paper, were

relatively simple to implement. However, they are clearly not
the most sophisticated (or necessarily the best) approach to
obtaining Dm for a relatively hard potential model such as the
SRS mesogen. More sophisticated free energy calculations are
possible and many of these are applicable to the systems we
have studied (for an excellent review of applicable methods see
ref. 30). In addition, other more complicated free energy
pathways are possible. An interesting approach involves taking
a chiral dopant and gradually shrinking it, while simulta-
neously growing its enantiomer out from the centre of the
original dopant. Alternative growth techniques, and the twin

enantiomer approach are currently being investigated in our
laboratory. Once these techniques have been implemented it
will be interesting to compare the accuracy and computational
expense of the method described here and the alternative
molecular field theory approach of Ferrarini et al.7–9 The latter
is based on the structure of a single dopant molecule, the
orienting strength of the nematic medium and the chirality
order parameter; and therefore does not rely on implicit solvent
molecules. This is both a weakness (in terms of not being able
to take local solvent–solute interactions in to account), and a
strength (in terms of computational cheapness). Further work
is required in comparing the two methods.
Finally, the long term potential of the work presented here is

the ability to extend to more realistic solvent models (as
discussed above). In such studies changes in the statistical
weight of each conformer that usually occur when entering an
orientationally ordered phase will be taken into account
automatically, as will any differences in HTPs arising from
specific solvent–solute interactions. Such studies should yield
accurate HTPs in all cases.
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